Abstract
The Advanced Boiling Water Reactor (ABWR) is being developed by an international team of BWR manufacturers to respond to worldwide utility needs in the 1990s. Major objectives of the ABWR program are design simplification; improved safety and reliability; reduced construction, fuel and operating costs; improved maneuverability; and reduced occupational exposure and radwaste. The ABWR incorporates the best proved features from BWR designs in Europe, Japan, and the United States and application of leading edge technology. Key features of the ABWR are internal recirculation pumps; fine-motion, electro-hydraulic control rod drives; digital control and instrumentation; multiplexed, fiber optic cabling network; pressure suppression containment with horizontal vents; cylindrical reinforced concrete containment; structural integration of the containment and reactor building; severe accident capability; state-of-the-art fuel; advanced turbine/generator with 52 in. last stage buckets; and advanced radwaste technology. The ABWR is being developed as the next generation Japan standard BWR under the guidance and leadership of the Tokyo Electric Power Company, Inc. and a group of Japanese BWR utilities. During 1987, the Tokyo Electric Power Company, Inc. announced its decision to proceed with two ABWR units at its Kashiwazaki-Kariwa Nuclear Power Station, with commercial operation of the first unit in 1996 and the second unit in 1998. The units will be supplied by a joint venture of General Electric, Hitachi and Toshiba, with General Electric selected to supply the nuclear steam supply systems, fuel and turbine/generators. In the United States it is being adapted to the needs of U.S. utilities through the Electric Power Research Institute's Advanced LWR Requirements Program, and is being reviewed by the U.S. Nuclear Regulatory Commission for certification as a preapproved U.S. Standard BWR under the U.S. Department of Energy's ALWR Design Verification Program. These cooperative Japanese and U.S. Programs are expected to establish the ABWR as a world class BWR for the 1990s. International cooperative efforts are also underway aimed at development of a simplified BWR employing natural circulation and passive safety systems. This BWR concept, while only in the conceptual design stage, shows significant technical and economic promise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.