Abstract

Climate is closely related to human life, food security and ecosystems. Forecasting future climate provides important information for agricultural production, water resources management and so on. In this paper, historical climate data from 1962–2001 was used at three sites in Tianjin Baodi, Tianjin and Tanggu districts as baseline and the model parameters were calibrated by the Long Ashton Research Station Weather Generator (LARS-WG). 2m-temperatures in 2011–2020 were verified under two scenarios, representative concentration pathway (RCP) 4.5 and RCP8.5 in different atmospheric circulation models with optimal minimum 2m-temperatures at the three sites. From 2031–2050, Tianjin will be using more moderate minimum 2m-temperatures in future simulations. Support vector machines (SVM) were used to optimize the simulated data to obtain more accurate future maximum and minimum 2m-temperatures for the three sites. The results showed that the determinant coefficient of LARS-WG simulation was 0.8 and SVM optimized determinant coefficient was 0.9 which greatly improved the prediction accuracy. The minimum and maximum future 2m-temperatures optimized under European Community Earth System Model (EC-EARTH) were relatively low and the same future 2m-temperatures optimized under Hadley Centre Global Environment Model Earth System (Had-GEM2-ES4) were high especially in the RCP8.5 scenario which simulated 2051–2070 climate. The SVM optimization showed that the maximum and minimum 2m-temperatures were in general agreement with the original simulation values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call