Abstract

AbstractMorocco is located in a region vulnerable to the impacts of climate change, which can have profound effects on its social, economic and environmental systems. This makes studies aimed at forecasting these impacts in future using climate models particularly important. However, the generally coarse spatial resolution of models, combined with a large number of models, imposes a limitation on the models, allowing the selection of the most appropriate ones for climate change impact assessments in a specific region. In this study, 38 GCMs and GCM‐RCMs from CMIP5 ensemble and CORDEX project were downscaled and bias‐corrected for use in projecting climate change over Morocco under the RCP4.5 and RCP8.5 scenarios. A three‐step sequential process was adopted, involving in that order the selection of models based on: (i) projection of climate means; (ii) projection of climate extremes; and (iii) ability of the models to simulate the baseline climate. Climate projections show precipitation decreases of up to 10% by the beginning of the century, with decreases of more than 20% under RCP8.5 projected by 2100, with the central and northern mountainous regions of the country being the most affected. Seasonal projections showed autumn months likely to experience the greatest decline in precipitation, up to 36.56% by the end of the century. Temperature projections revealed an upward trend in mean, maximum and minimum temperatures, with increases of up to 3°C predicted by mid‐century over most of the country, particularly in the winter months. Our results point to a concerning future, with impacts related to decreased precipitation and increased temperatures expected to be many and varied across the country. Nevertheless, they can help provide a knowledge base for efforts to mitigate and adapt to expected changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call