Abstract

New versions of the high-resolution 20- and 60-km-mesh Meteorological Research Institute (MRI) atmospheric general circulation models (MRI-AGCM version 3.2) have been developed and used to investigate potential future changes in tropical cyclone (TC) activity. Compared with the previous version (version 3.1), version 3.2 yields a more realistic simulation of the present-day (1979–2003) global distribution of TCs. Moreover, the 20-km-mesh model version 3.2 is able to simulate extremely intense TCs (categories 4 and 5), which is the first time a global climate model has been able to simulate such extremely intense TCs through a multidecadal simulation. Future (2075–99) projections under the Intergovernmental Panel on Climate Change (IPCC) A1B scenario are conducted using versions 3.1 and 3.2, showing consistent decreases in the number of TCs globally and in both hemispheres as climate warms. Although projected future changes in basin-scale TC numbers show some differences between the two versions, the projected frequency of TC occurrence shows a consistent decrease in the western part of the western North Pacific (WNP) and in the South Pacific Ocean (SPO), while it shows a marked increase in the central Pacific. Both versions project a future increase in the frequency of intense TCs globally; however, the degree of increase is smaller in version 3.2 than in version 3.1. This difference arises partly because version 3.2 projects a pronounced decrease in mean TC intensity in the SPO. The 20-km-mesh model version 3.2 projects a northward shift in the most intense TCs (category 5) in the WNP, indicating an increasing potential for future catastrophic damage due to TCs in this region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.