Abstract

A stronger than global mean warming trend is projected over Central Asia in the coming century. Based on the historical simulations and projections under four combined scenarios of the Shared Socioeconomic Pathways and the Representative Concentration Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) provided by 15 models from the Sixth Phase of Coupled Model Intercomparison Project (CMIP6), we show a comprehensive picture of the future changes in precipitation over Central Asia under rapid warming and investigate possible mechanisms. At the end of the twenty-first century, robust increase of annual mean precipitation under all the scenarios is found (4.23 [2.60 to 7.36] %, 10.52 [5.05 to 13.36] %, 14.51 [8.11 to 16.91] %, 14.41 [9.58 to 21.26] % relative to the present-day for SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, respectively). The response of precipitation to increasing global mean temperature shows similar spatial patterns for the four scenarios with stronger changes over Tianshan mountain and the northern part of Central Asia. Further analysis reveals a wetting trend in spring and a drying trend in summer in both the north of Central Asia (NCA) and south of Central Asia (SCA). The wetting trend in spring is balanced by the increase of evaporation, while the drying trend in summer is mainly contributed by the decrease of vertical moisture advection. The thermodynamic effects associated with humidity changes contribute to the drying trends in both the two domains, while the dynamic effects favor for the drying trend in NCA and offset the drying trend in SCA. The response of precipitation to increasing temperature results in enhanced seasonalities for SCA and NCA, and an advancing of the first peak from summer to spring in the NCA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.