Abstract
β-thalassemia is an inherited disorder due to mutations found in the β-globin gene, leading to anemia and requiring sporadic or chronic blood transfusions for survival. Without proper chelation, β-thalassemia results in iron overload. Ineffective erythropoiesis can lead to iron overload even in untransfused patients who are affected by β-thalassemia intermedia. Better understanding of the molecular biologic aspects of this disorder has led to improvements in population screening and prenatal diagnosis, which, in turn, have led to dramatic reductions in the number of children born with β-thalassemia major in the Mediterranean littoral. However, as a consequence of decreases in neonatal and childhood mortality in other geographical areas, β-thalassemia has become a worldwide clinical problem. A number of unsolved pathophysiological issues remain, such as ineffective erythropoieis, abnormal iron absorption, oxidative stress, splenomegaly and thrombosis. In the last few years, novel studies have the potential to introduce new therapeutic approaches that might reduce these problems and limit the need for blood transfusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.