Abstract

Regional climate models (RCM) provide site-specific meteorological data at a suitable spatial resolution for the estimation of future climate-driven changes in aquatic ecosystems. In this study, we used meteorological data from the RCM weather-situation-based regionalization method (WETTREG), available for Germany, to force a one-dimensional hydrodynamic lake model to simulate climate-induced changes on the summer thermal stratification of Lake Ammersee in southern Germany. In comparison to the period of 2002–2010, an extension by 22 days of the summer stratification period was simulated for 2042–2050. Further, a vertical shift in the position of metalimnion and thermocline within the lake was not detected, but a slight increase in the metalimnion thickness during mid-summer of 1 m was simulated. Along with these changes in stratification patterns, warming for the epilimnion water temperatures during summer stratification and for the entire water body in winter were simulated for the future. By contrast the hypolimnion temperatures are simulated to decrease during the summer stratification. In addition to simulating future limno-physical aspects, the investigation demonstrates that the RCM data of the WETTREG projection are suitable for conducting climate change impact studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call