Abstract
BackgroundCore fucosylation (addition of fucose in α-1,6-linkage to core N-acetylglucosamine of N-glycans) catalyzed by fucosyltransferase 8 (FUT8) is critical for signaling receptors involved in many physiological and pathological processes such as cell growth, adhesion, and tumor metastasis. Transforming growth factor-β (TGF-β)-induced epithelial–mesenchymal transition (EMT) regulates the invasion and metastasis of breast tumors. However, whether receptor core fucosylation affects TGF-β signaling during breast cancer progression remains largely unknown.MethodIn this study, gene expression profiling and western blot were used to validate the EMT-associated expression of FUT8. Lentivirus-mediated gain-of-function study, short hairpin RNA (shRNA) or CRISPR/Cas9-mediated loss-of-function studies and pharmacological inhibition of FUT8 were used to elucidate the molecular function of FUT8 during TGF-β-induced EMT in breast carcinoma cells. In addition, lectin blot, luciferase assay, and in vitro ligand binding assay were employed to demonstrate the involvement of FUT8 in the TGF-β1 signaling pathway. The role of FUT8 in breast cancer migration, invasion, and metastasis was confirmed using an in vitro transwell assay and mammary fat pad xenograft in vivo tumor model.ResultsGene expression profiling analysis revealed that FUT8 is upregulated in TGF-β-induced EMT; the process was associated with the migratory and invasive abilities of several breast carcinoma cell lines. Gain-of-function and loss-of-function studies demonstrated that FUT8 overexpression stimulated the EMT process, whereas FUT8 knockdown suppressed the invasiveness of highly aggressive breast carcinoma cells. Furthermore, TGF-β receptor complexes might be core fucosylated by FUT8 to facilitate TGF-β binding and enhance downstream signaling. Importantly, FUT8 inhibition suppressed the invasive ability of highly metastatic breast cancer cells and impaired their lung metastasis.ConclusionsOur results reveal a positive feedback mechanism of FUT8-mediated receptor core fucosylation that promotes TGF-β signaling and EMT, thus stimulating breast cancer cell invasion and metastasis.
Highlights
Core fucosylation catalyzed by fucosyltransferase 8 (FUT8) is critical for signaling receptors involved in many physiological and pathological processes such as cell growth, adhesion, and tumor metastasis
Gene expression profiling analysis revealed that FUT8 is upregulated in Transforming growth factor-β (TGF-β)-induced epithelial–mesenchymal transition (EMT); the process was associated with the migratory and invasive abilities of several breast carcinoma cell lines
Gain-of-function and loss-offunction studies demonstrated that FUT8 overexpression stimulated the EMT process, whereas FUT8 knockdown suppressed the invasiveness of highly aggressive breast carcinoma cells
Summary
Core fucosylation (addition of fucose in α-1,6-linkage to core N-acetylglucosamine of N-glycans) catalyzed by fucosyltransferase 8 (FUT8) is critical for signaling receptors involved in many physiological and pathological processes such as cell growth, adhesion, and tumor metastasis. Transforming growth factor-β (TGF-β)induced epithelial–mesenchymal transition (EMT) regulates the invasion and metastasis of breast tumors. Whether receptor core fucosylation affects TGF-β signaling during breast cancer progression remains largely unknown. During the cellular epithelial–mesenchymal transition (EMT), epithelial tumor cells lose their polarized organization and cell–cell junctions. Cells undergo changes in shape and cytoskeletal organization and acquire mesenchymal characteristics important for metastasis [2, 3]. Transforming growth factor-β (TGF-β)-induced EMT regulates the invasion and metastasis of breast tumors [4, 5]. Dissecting the molecular mechanisms that regulate EMT is pivotal for controlling tumor invasiveness and metastasis
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.