Abstract

To investigate the regulatory role of α-1, 6-fucosyltransferase (FUT8) in TGF-β1-induced proliferation, migration and fibrosis of human embryonic lung fibroblasts (MRC-5 cells) and explore the underlying molecular mechanism. C57/BL6 mice were randomized into 4 groups for treatment with saline (control group), bleomycin, bleomycin+sh-NC or bleomycin+sh-FUT8, and pulmonary fibrosis was observed using Masson staining.MRC-5 cells were transfected with si-NC, FUT8 siRNA (si-FUT8), or both si-FUT8 and a galectin-3(Gal-3) overexpression plasmid (pcDNA3.1-Gal) prior to TGF-β1 treatment, and the changes in cell proliferation and migration were assessed using CCK-8 assay, BrdU assay, and wound healing assay; the changes in the expression levels of α-SMA, collagen I (COLIA1) and extracellular matrix fibronectin (FN) were detected with real-time quantitative PCR (RT-qPCR) and Western blotting.The interaction of FUT8 and Gal-3 was tested using coimmunoprecipitation (Co-IP) assay, and the effect of FUT8 silencing on Gal-3 and FAK/Akt signaling pathways was analyzed. FUT8 knockdown significantly reduced bleomycin-induced extracellular collagen deposition in the lung tissues of the mice.Silencing FUT8 obviously inhibited cell proliferation (P < 0.05) and migration mediated by TGF-β1.FUT8 knockdown down-regulated the mRNA and protein levels of α-SMA, COLIA1 and FN (P < 0.05) in the cells.Coimmunoprecipitation analysis showed that FUT8 interacted with Gal-3.Silencing FUT8 significantly down-regulated Gal-3 expression and inhibited the activation of the FAK/Akt signaling pathway (P < 0.05).Overexpression of Gal-3 obviously reversed the effects of FUT8 silencing on cell proliferation, migration and fibrosis (P < 0.05). FUT8 regulates TGF-β1-induced proliferation, migration and fibrosis of MRC-5 cells by modulating Gal-3 expression, in which the FAK/Akt pathway may play a role.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.