Abstract

BackgroundMigratory animals use information from the Earth’s magnetic field on their journeys. Geomagnetic navigation has been observed across many taxa, but how animals use geomagnetic information to find their way is still relatively unknown. Most migration studies use a static representation of geomagnetic field and do not consider its temporal variation. However, short-term temporal perturbations may affect how animals respond - to understand this phenomenon, we need to obtain fine resolution accurate geomagnetic measurements at the location and time of the animal. Satellite geomagnetic measurements provide a potential to create such accurate measurements, yet have not been used yet for exploration of animal migration.MethodsWe develop a new tool for data fusion of satellite geomagnetic data (from the European Space Agency’s Swarm constellation) with animal tracking data using a spatio-temporal interpolation approach. We assess accuracy of the fusion through a comparison with calibrated terrestrial measurements from the International Real-time Magnetic Observatory Network (INTERMAGNET). We fit a generalized linear model (GLM) to assess how the absolute error of annotated geomagnetic intensity varies with interpolation parameters and with the local geomagnetic disturbance.ResultsWe find that the average absolute error of intensity is − 21.6 nT (95% CI [− 22.26555, − 20.96664]), which is at the lower range of the intensity that animals can sense. The main predictor of error is the level of geomagnetic disturbance, given by the Kp index (indicating the presence of a geomagnetic storm). Since storm level disturbances are rare, this means that our tool is suitable for studies of animal geomagnetic navigation. Caution should be taken with data obtained during geomagnetically disturbed days due to rapid and localised changes of the field which may not be adequately captured.ConclusionsBy using our new tool, ecologists will be able to, for the first time, access accurate real-time satellite geomagnetic data at the location and time of each tracked animal, without having to start new tracking studies with specialised magnetic sensors. This opens a new and exciting possibility for large multi-species studies that will search for general migratory responses to geomagnetic cues. The tool therefore has a potential to uncover new knowledge about geomagnetic navigation and help resolve long-standing debates.

Highlights

  • Migratory animals use information from the Earth’s magnetic field on their journeys

  • We found the error increased with the presence of geomagnetic storms

  • We found that the absolute error increases logarithmically for Lerwick but linearly at Hartland and Pedeli (Fig. 7C), which is a latitudinal effect related to the proximity of Lerwick to the auroral region

Read more

Summary

Introduction

Migratory animals use information from the Earth’s magnetic field on their journeys. Geomagnetic navigation has been observed across many taxa, but how animals use geomagnetic information to find their way is still relatively unknown. Long-distance migratory navigation consists of two parts, determining the direction of movement (through compass orientation) and geographic positioning, that is, knowing where the animal is located at a specific time [1]. Both these mechanisms support the so-called true navigation, which is defined as finding the way to a far away unknown location using only cues available locally [2]. One of the migratory strategies is geomagnetic navigation [3], which uses information from the Earth’s magnetic field for either compass orientation or geographic positioning or both. In spite of decades of research, we still do not fully understand how exactly animals use the information provided by the Earth’s magnetic field to achieve true navigation [1]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.