Abstract

Doxorubicin (DOX) is a chemotherapeutic agent that has been used in the treatment of breast cancer. However, serious toxic effects have limited its use, mainly cardiotoxicity. To minimize the adverse effects, liposomal preparations containing DOX have been developed. These preparations can reach the target in the tumor region as well as bypass the resistance-related problems. An alternative to increased therapeutic efficacy may be the fusion of liposomes with exosomes released from tumor cells to facilitate membrane and fusion interactions, achieving greater cell uptake. Thus, the purpose of this study was the fusion of exosomes derived from breast tumor cells with long-circulating and pH-sensitive liposomes loading DOX (ExoSpHL-DOX) for the treatment of breast cancer. The mean diameter of ExoSpHL-DOX was 100.8 ± 7.8nm, the polydispersity index was 0.122 ± 0.004, and the encapsulated DOX content was equal to 83.5 ± 2.5%. The fusion of exosomes with long-circulating and pH-sensitive liposomes was confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy, and nano-flow cytometry. The physicochemical characteristics of ExoSpHL-DOX were maintained for 60days, at 4°C. The study of the release of DOX from ExoSpHL-DOX in dilution media with different pH values showed the pH sensitivity characteristic of the nanosystem, since 96.6 ± 0.2% of DOX was released from ExoSpHL-DOX at pH 5.0, while at pH 7.4, the release was 70.1 ± 1.7% in the medium. The cytotoxic study against the breast cancer cell line demonstrated that ExoSpHL-DOX treatment significantly reduced the cancer cell viability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call