Abstract

BackgroundAlpha-1 proteinase inhibitor (API) is a plasma serpin superfamily member that inhibits neutrophil elastase; variant API M358R inhibits thrombin and activated protein C (APC). Fusing residues 1-75 of another serpin, heparin cofactor II (HCII), to API M358R (in HAPI M358R) was previously shown to accelerate thrombin inhibition over API M358R by conferring thrombin exosite 1 binding properties. We hypothesized that replacing HCII 1-75 region with the 13 C-terminal residues (triskaidecapeptide) of hirudin variant 3 (HV354-66) would further enhance the inhibitory potency of API M358R fusion proteins. We therefore expressed HV3API M358R (HV354-66 fused to API M358R) and HV3API RCL5 (HV354-66 fused to API F352A/L353V/E354V/A355I/I356A/I460L/M358R) API M358R) as N-terminally hexahistidine-tagged polypeptides in E. coli.ResultsHV3API M358R inhibited thrombin 3.3-fold more rapidly than API M358R; for HV3API RCL5 the rate enhancement was 1.9-fold versus API RCL5; neither protein inhibited thrombin as rapidly as HAPI M358R. While the thrombin/Activated Protein C rate constant ratio was 77-fold higher for HV3API RCL5 than for HV3API M358R, most of the increased specificity derived from the API F352A/L353V/E354V/A355I/I356A/I460L API RCL 5 mutations, since API RCL5 remained 3-fold more specific than HV3API RCL5. An HV3 54-66 peptide doubled the Thrombin Clotting Time (TCT) and halved the binding of thrombin to immobilized HCII 1-75 at lower concentrations than free HCII 1-75. HV3API RCL5 bound active site-inhibited FPR-chloromethyl ketone-thrombin more effectively than HAPI RCL5. Transferring the position of the fused HV3 triskaidecapeptide to the C-terminus of API M358R decreased the rate of thrombin inhibition relative to that mediated by HV3API M358R by 11-to 14-fold.ConclusionsFusing the C-terminal triskaidecapeptide of HV3 to API M358R-containing serpins significantly increased their effectiveness as thrombin inhibitors, but the enhancement was less than that seen in HCII 1-75–API M358R fusion proteins. HCII 1-75 was a superior fusion partner, in spite of the greater affinity of the HV3 triskaidecapeptide, manifested both in isolated and API-fused form, for thrombin exosite 1. Our results suggest that HCII 1-75 binds thrombin exosite 1 and orients the attached serpin scaffold for more efficient interaction with the active site of thrombin than the HV3 triskaidecapeptide.

Highlights

  • Alpha-1 proteinase inhibitor (API) is a plasma serpin superfamily member that inhibits neutrophil elastase; variant Alpha-1-proteinase inhibitor (API) in N-to Cterminal order (M358R) inhibits thrombin and activated protein C (APC)

  • Induction of bacterial cultures harbouring expression plasmids specifying HV3API M358R with arabinose led to the appearance of a novel 47 kDa protein in total soluble lysate preparations, that was enriched by nickel-chelate chromatography and purified following an additional ion exchange step, like API M358R and HAPI M358R

  • This approach increased the rate of inhibition of αthrombin inhibition both for HV3API M358R, and for HV3API HAPI M358R with additional F352A/L353V/E354V/A355I/I356A/I460L substitutions (RCL5), in which six reactive centre loop (RCL) residues in addition to M358R were mutated to the corresponding residues in antithrombin

Read more

Summary

Introduction

Alpha-1 proteinase inhibitor (API) is a plasma serpin superfamily member that inhibits neutrophil elastase; variant API M358R inhibits thrombin and activated protein C (APC). API inhibits other serine proteinases such as thrombin [7], coagulation factor XIa [8], and activated protein C (APC) [9], but at rates at least six orders of magnitude less rapid than its inhibition of elastase; it efficiently inhibits trypsin, but would not be expected to come in contact with this digestive system enzyme under physiological conditions Serpins inhibit their cognate proteinases via a complex mechanism initiated when the reactive centre loop (RCL) surface structure forms an encounter complex with the active site of a protease [2]. Crystal structures of API in intact form [16], in RCLcleaved form [17], in encounter complexes with trypsin [18], and in covalent serpin-enzyme complexes with trypsin [15] and elastase [14] have contributed to the elucidation of this mechanism

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.