Abstract

The Deepwater Horizon blowout in the Gulf of Mexico resulted in one of the largest accidental oil disasters in U.S. history. NASA acquired radar and hyperspectral imagery and made them available to the scientific community for analyzing impacts of the oil spill. In this study, we use the L-band quad-polarized radar data acquired by Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and Hyperspectral Imagery (HSI) from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) optical sensor. The main objective of this research is to apply fusion techniques on polarimetric radar and hyperspectral imagery to investigate the benefit of fusion for improved classification of coastal vegetation contaminated by oil. In this approach, fusion is implemented at the pixel level by concatenating the hyperspectral data with the high resolution SAR data and analyze the fused data with Support Vector Machine (SVM) classification algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.