Abstract

Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor-sensitizing (EGFR-sensitizing) mutations exhibit a positive response to tyrosine kinase inhibitors (TKIs). Given the limitations of current clinical predictive methods, it is critical to explore radiomics-based approaches. In this study, we leveraged deep-learning technology with multimodal radiomics data to more accurately predict EGFR-sensitizing mutations. A total of 202 patients who underwent both flourine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) scans and EGFR sequencing prior to treatment were included in this study. Deep and shallow features were extracted by a residual neural network and the Python package PyRadiomics, respectively. We used least absolute shrinkage and selection operator (LASSO) regression to select predictive features and applied a support vector machine (SVM) to classify the EGFR-sensitive patients. Moreover, we compared predictive performance across different deep models and imaging modalities. In the classification of EGFR-sensitive mutations, the areas under the curve (AUCs) of ResNet-based deep-shallow features and only shallow features from different multidata were as follows: RES_TRAD, PET/CT vs. CT-only vs. PET-only: 0.94 vs. 0.89 vs. 0.92; and ONLY_TRAD, PET/CT vs. CT-only vs. PET-only: 0.68 vs. 0.50 vs. 0.38. Additionally, the receiver operating characteristic (ROC) curves of the model using both deep and shallow features were significantly different from those of the model built using only shallow features (P<0.05). Our findings suggest that deep features significantly enhance the detection of EGFR-sensitizing mutations, especially those extracted with ResNet. Moreover, PET/CT images are more effective than CT-only and PET-only images in producing EGFR-sensitizing mutation-related signatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.