Abstract

To accurately estimate locations and velocities of surrounding targets (cars) is crucial for advanced driver assistance systems based on radar sensors. In this paper we derive methods for fusing data from multiple radar sensors in order to improve the accuracy and robustness of such estimates. First we pose the target estimation problem as a multivariate multidimensional spectral estimation problem. The problem is multivariate since each radar sensor gives rise to a measurement channel. Then we investigate how the use of the cross-spectra affects target estimates. We see that the use of the magnitude of the cross-spectrum significantly improves the accuracy of the target estimates, whereas an attempt to compensate the phase lag of the cross-spectrum only gives marginal improvement. This paper may be viewed as a first step towards applying high-resolution methods that builds on multidimensional multivariate spectral estimation for sensor fusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.