Abstract

Satellite precipitation products are not accurate in representing the actual precipitation measured by gauges. To improve their accuracy, machine learning algorithms are applied in regression settings with ground-based measurements as dependent variables and satellite precipitation data as predictor variables. Here we examine the case of light gradient-boosting machine (LightGBM) for correcting daily IMERG (Integrated Multi-satellitE Retrievals for GPM) and PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) precipitation data using daily precipitation measurements in the contiguous US. Our demonstration especially focuses on the estimation of quantiles of the conditional probability distribution of daily precipitation at given points, with emphasis on extreme values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.