Abstract
The study investigated the use of aerial multispectral imagery and ground-based hyperspectral data for the discrimination of different crop types and timely detection of cotton plants over large areas. Airborne multispectral imagery and ground-based spectral reflectance data were acquired at the same time over three large agricultural fields in Burleson Co., Texas during the 2010 growing season. The discrimination accuracy of aerial- and ground-based data was examined individually; then a multi-sensor data fusion technique was applied on both datasets in order to improve the accuracy of discrimination. The individual classification accuracy of data taken with the aerial- and ground-based sensors were 90% and 93.3%, respectively. In comparison, the accuracy of discriminating crop types with fused data was 100% in the calibration and only 3.33% misclassification in the cross-validation. These results suggest that data fusion techniques could greatly enhance our ability to detect cotton from other plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.