Abstract

The aim of this study was to evaluate the ability of fusion of pretreatment magnetic resonance (MR) imaging with posttreatment perfusion-CT (P-CT) after radiofrequency ablation (RFA) of hepatocellular carcinomas (HCCs) and to determine treatment success in an objective, quantitative way. In this institutional review board-approved study, 39 patients (78.4% male; mean age 68.2 ± 8.5 years) with a total of 43 HCCs, who underwent RFA at our institution and had diagnostic pre-RFA MR imaging and post-RFA P-CT, were included in the study. Post-RFA P-CT was performed within 24 hours after RFA. In a first step, the pre-RFA MR imaging, depicting the HCC, was registered onto the post-RFA P-CT using nonrigid image registration. After image registration, the MR data were reloaded jointly with the calculated perfusion parameter volumes into the perfusion application for quantitative analysis. A 3-dimensional volume of interest was drawn around the HCC and the ablation zone; both outlines were automatically projected onto all perfusion maps. Resulting perfusion values (normalized peak enhancement [NPE, %]; arterial liver perfusion [ALP, in mL/min/100 mL]; BF [blood flow, mL/100 mL/min]; and blood volume [BV, mL/100 mL]) and histogram data were recorded. Local tumor recurrence was defined in follow-up imaging according to the EASL guidelines. Image registration of MR imaging and CT data was successful in 37 patients (94.9%). Local tumor recurrence was observed in 5 HCCs (12%). In the local tumor recurrence group (LTR-group), HCC size was significantly larger (22.7 ± 3.9 cm vs 17.8 ± 5.3 cm, P = 0.035) and the ablation zone was significantly smaller (29.8 ± 6.9 cm vs 39.3 ± 6.8 cm, P = 0.014) compared with the no-local tumor recurrence group (no-LTR group). The differences (ablation zone - tumor) of the perfusion parameters NPE, ALP, BF, and BV significantly differed between the 2 groups (all P's < 0.005). Especially, the difference (ablation zone - tumor) of NPE and ALP, with a cutoff value of zero, accurately differentiated between LTR or no-LTR in all cases. A negative difference of these perfusion parameters identified local tumor recurrence in all cases. Image registration of pre-RFA MR imaging onto post-RFA P-CT is feasible and allows to predict local tumor recurrence within 24 hours after RFA in an objective, quantitative manner and with excellent accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call