Abstract

Efficient integration of remote sensing information with different temporal, spectral and spatial resolutions is important for accurate land cover mapping. A new temporal fusion classification (TFC) model is presented for land cover classification, based on statistical fusion of multitemporal satellite images. In the proposed model, the temporal dependence of multitemporal images is taken into account by estimating transition probabilities from the change pattern of a vegetation dynamics indicator (VDI). Extension of this model is applicable to Synthetic Aperture Radar (SAR) images and integration of multisensor multitemporal satellite images, concerning both temporal attributes and reliability of multiple data sources. The feasibility of the new method is verified using multitemporal Landsat Thematic Mapper (TM) and ERS SAR satellite images, and experimental results show improved performance over conventional methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.