Abstract
In this article, a novel hyperspectral image (HSI) classification method based on fusing multiple edge-preserving operations (EPOs) is proposed, which consists of the following steps. First, the edge-preserving features are obtained by performing different types of EPOs, i.e., local edge-preserving filtering and global edge-preserving smoothing on the dimension-reduced HSI. Then, with the assistance of a superpixel segmentation method, the edge-preserving features are further improved by considering the inter and intra spectral properties of superpixels. Finally, the spectral and edge-preserving features are fused to form one composite kernel, which is fed into the support vector machine (SVM) followed by a majority voting fusion scheme. Experimental results on three data sets demonstrate the superiority of the proposed method over several state-of-the-art classification approaches, especially when the training sample size is limited. Furthermore, 21 well-known methods, including mathematical morphology-based approaches, sparse representation models, and deep learning-based classifiers, are adopted to be compared with the proposed method on Houston data set with standard sets of training and test samples released during 2013 Data Fusion Contest, which also shows the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.