Abstract
In this paper the fusion of artificial neural networks, granular computing and learning automata theory is proposed and we present as a final result ANLAGIS, an adaptive neuron-like network based on learning automata and granular inference systems. ANLAGIS can be applied to both pattern recognition and learning control problems. Another interesting contribution of this paper is the distinction between pre-synaptic and post-synaptic learning in artificial neural networks. To illustrate the capabilities of ANLAGIS some experiments on knowledge discovery in data mining and machine learning are presented. The main, novel contribution of ANLAGIS is the incorporation of Learning Automata Theory within its structure; the paper includes also a novel learning scheme for stochastic learning automata.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.