Abstract
Local binary pattern (LBP) has limitation in extracting the edge and direction information, which is vital to infrared face recognition. A new infrared face recognition algorithm fusion of LBP and histogram of oriented gradients (HOG) is proposed. First, LBP operator is adopted to extract the texture feature of an infrared face, and then the edge features of the original infrared face are extracted by using HOG operator. Finally, multiple kernel learning (MKL) is applied to fuse the texture features and edge features. Experiments are conducted on infrared face database of variable ambient temperature. The results show that the fusion of LBP and HOG perform better than traditional LBP or HOG features for infrared face recognition, the proposed method is more robust to ambient temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.