Abstract

Traditional techniques based on image fusion are arduous in integrating complementary or heterogeneous infrared (IR)/visible (VS) images. Dissimilarities in various kind of features in these images are vital to preserve in the single fused image. Hence, simultaneous preservation of both the aspects at the same time is a challenging task. However, most of the existing methods utilize the manual extraction of features; and manual complicated designing of fusion rules resulted in a blurry artifact in the fused image. Therefore, this study has proposed a hybrid algorithm for the integration of multi-features among two heterogeneous images. Firstly, fuzzification of two IR/VS images has been done by feeding it to the fuzzy sets to remove the uncertainty present in the background and object of interest of the image. Secondly, images have been learned by two parallel branches of the siamese convolutional neural network (CNN) to extract prominent features from the images as well as high-frequency information to produce focus maps containing source image information. Finally, the obtained focused maps which contained the detailed integrated information are directly mapped with the source image via pixel-wise strategy to result in fused image. Different parameters have been used to evaluate the performance of the proposed image fusion by achieving 1.008 for mutual information (MI), 0.841 for entropy , 0.655 for edge information (EI), 0.652 for human perception (HP), and 0.980 for image structural similarity (ISS). Experimental results have shown that the proposed technique has attained the best qualitative and quantitative results using 78 publically available images in comparison to the existing discrete cosine transform (DCT), anisotropic diffusion & karhunen-loeve (ADKL), guided filter (GF), random walk (RW), principal component analysis (PCA), and convolutional neural network (CNN) methods.

Highlights

  • The infrared sensors or multi-sensors are used to capture the infrared and visible images

  • Experimental results have shown that the proposed technique has attained the best qualitative and quantitative results using 78 publically available images in comparison to the existing discrete cosine transform (DCT), anisotropic diffusion & karhunen-loeve (ADKL), guided filter (GF), random walk (RW), principal component analysis (PCA), and convolutional neural network (CNN) methods

  • Many researchers presented a lot of IR/VS image fusion approaches which are roughly classified into various categories as multi-scale decomposition (MST), principal component analysis (PCA), sparse representation (SR), fuzzy sets (FS), and deep learning (DL)

Read more

Summary

Introduction

The infrared sensors or multi-sensors are used to capture the infrared and visible images. The most important visible feature such as texture information get lost due to the small spatial resolution of the infrared images, as a result objects contain insufficient details. Many researchers presented a lot of IR/VS image fusion approaches which are roughly classified into various categories as multi-scale decomposition (MST), principal component analysis (PCA), sparse representation (SR), fuzzy sets (FS), and deep learning (DL) In consideration to this problem, the main motivation behind this work was to extend the research in the direction of the examination of the fused image to be helpful in the object tracking, object detection, biometric recognition, and RGB-infrared fusion tracking. Efficacious evaluation of the quality of pixels has been done with the extraction of target features and background features in order to integrate them for the generation of clear focused fused image

Related Works
Fuzzification
Siamese CNN
Fusion Scheme
Experimental Evaluations
Data Acquisition
Performance Evaluation Metrics
Experimental Setup
Subjective Visibility
Objective Visibility
Conclusion and Future Directions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call