Abstract
In this study, a fast and efficient consensus segmentation method is proposed which fuses a set of baseline segmentation maps under an unsupervised Markov Random Fields (MRF) framework. The degree of consensus among the segmentation maps are estimated as the relative frequency of co occurrences among the adjacent segments. Then, these relative frequencies are used to construct the energy function of an unsupervised MRF model. It is well-known that MRF framework is commonly used for formulating the spatial relationships among the super-pixels, under the Potts model. In this study, the Potts model is reorganized to represent the degree of consensus among the spatially adjacent segments (super-pixels). The proposed segmentation fusion method, called, Boosted-MRF, is tested in various experimental setups, and its performance is compared to the state of the art segmentation methods and satisfactory results are obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.