Abstract

Passive, hyperspectral image data and bathymetric lidar data are complimentary data types that can be used effectively in tandem. Hyperspectral data contain information related to water quality, depth, and bottom type; and bathymetric lidar data contain precise information about the depth of the water and qualitative information about water quality and bottom reflectance. The two systems together provide constraints on each other. For example, lidar-derived depths can be used to constrain spectral radiative transfer models for hyperspectral data, which allows for the estimation of bottom reflectance for each pixel. Similarly, depths can be used to calibrate models, which permit the estimation of depths from the hyperspectral data cube on the raster defined by the spectral imagery. We demonstrate these capabilities by fusing hyperspectral data from the LASH and AVIRIS spectrometers with depth data from the SHOALS bathymetric laser to achieve bottom classification and increase the density of depth measurements in Kaneohe Bay, Hawaii. These capabilities are envisioned as operating modes of the next-generation SHOALS system, CHARTS, which will deploy a bathymetric laser and spectrometer on the same platform.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call