Abstract
Spirochetes of the genus Borrelia include the causative agents of Lyme disease and relapsing fever. These bacteria have a highly segmented genome where most replicons are linear molecules terminated by covalently closed hairpin telomeres. Moreover, these genomes appear to be in a state of flux with extensive and ongoing DNA rearrangements by unknown mechanisms. The B. burgdorferi telomere resolvase ResT generates the hairpin telomeres from replication intermediates in a reaction with mechanistic similarities to that catalyzed by type IB topoisomerases and tyrosine recombinases. We report here the unexpected ability of ResT to catalyze the fusion of hairpin telomeres in a reversal of the telomere resolution reaction. We propose that stabilized ResT-mediated telomere fusions are an underlying force for maintaining the B. burgdorferi genome in a state of flux.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.