Abstract
Image Fusion is to integrate complementary and redundant information from multiple images of the same scene to create a single composite image that contains all the important features of the original images. The existing fusion techniques based on either direct operation on pixels or segments fail to produce fused images of the required quality and are mostly application based. The existing segmentation algorithms become complicated and time consuming when multiple images are to be fused. A new method of segmenting and fusion of gray scale images adopting Self organizing Feature Maps(SOM) is proposed in this paper. The Self Organizing Feature Maps is adopted to produce multiple slices of the source and reference images based on various combination of gray scale and can dynamically fused depending on the application. The proposed technique is adopted and analyzed for fusion of multiple images. The technique is robust in the sense that there will be no loss in information due to the property of Self Organizing Feature Maps; noise removal in the source images done during processing stage and fusion of multiple images is dynamically done to get the desired results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.