Abstract

Horizon line detection requires finding a boundary which segments an image into sky and non-sky regions. It has many applications including visual geo-localization and geo-tagging, robot navigation/localization, and ship detection and port security. Recently, two machine learning based approaches have been proposed for horizon line detection: one relying on edge classification and the other relying on pixel classification. In the edge-based approach, a classifier is used to refine the edge map by removing non-horizon edges. The refined edge map is then used to form a multi-stage graph where dynamic programming is applied to extract the horizon line. In the edge-less approach, classification is used to obtain a confidence of horizon-ness at each pixel location. The horizon line is then extracted by applying dynamic programming on the resultant dense classification map rather than on the edge map. Both approaches have shown to outperform the classical approach where dynamic programming is applied on the non-refined edge map. In this paper, we provide a comparison between the edge-less and edge-based approaches using two challenging data sets. Moreover, we propose fusing the information about the horizon-ness and edge-ness of each pixel. Our experimental results illustrate that the proposed fusion approach outperforms both the edge-based and edge-less approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.