Abstract
Bifunctional cellulase (glycoside hydrolase 5, GH5) from Bacillus sp. D04 having both endo- and exoglucanase activities was fused with two types of carbohydrate binding modules (CBMs). CBM3 from Bacillus sp. D04 and CBM9 from Thermotoga maritima Xyn10A were added to GH5 to hydrolyze microcrystalline cellulose (Avicel) as well as water-soluble cellulose (carboxymethyl cellulose, CMC). The optimum temperature of GH5 was 50oC, while it increased to 60oC for the fusion GH5-CBM3 and GH5-CBM9, indicating that addition of CBM increased the thermostability of the enzyme. Addition of CBM3 and CBM9 enhanced the GH5 affinity (KM), for which KM decreased from 104 to 33.9 ~ 35.1 mg/mL for CMC, and from 115 to 55.5 ~ 80.3 mg/mL for Avicel, respectively. The catalytic efficiency (kcat/KM) also increased from 4.80 to 5.36 ~ 6.46 (mL/mg)/sec for CMC, and from 1.77 to 2.40 ~ 4.45 (mL/mg)/sec for Avicel, respectively, by addition of CBM3 and CBM9.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.