Abstract

In this paper, a quadratic convolution neural network (QCNN) using both audio and vibration signals is utilized for bearing fault diagnosis. Specifically, to make use of multi-modal information for bearing fault diagnosis, the audio and vibration signals are first fused together using a 1 × 1 convolution. Then, a quadratic convolution neural network is applied for the fusion feature extraction. Finally, a decision module is designed for fault classification. The proposed method utilizes the complementary information of audio and vibration signals, and is insensitive to noise. The experimental results show that the accuracy of the proposed method can achieve high accuracies for both single and multiple bearing fault diagnosis in the noisy situations. Moreover, the combination of two-modal data helps improve the performance under all conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.