Abstract

This paper describes our recent efforts in exploring effective discriminative features for speaker recognition. Recent researches have indicated that the appropriate fusion of features is critical to improve the performance of speaker recognition system. In this paper we describe our approaches for the NIST 2006 Speaker Recognition Evaluation. Our system integrated the cepstral GMM modeling, cepstral SVM modeling and tokenization at both phone level and frame level. The experimental results on both NIST 2005 SRE corpus and NIST 2006 SRE corpus are presented. The fused system achieved 8.14% equal error rate on 1conv4w-1conv4w test condition of the NIST 2006 SRE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.