Abstract

Engineering of a new type of plant base editor for simultaneous adenine transition and transversion within the editing window will greatly expand the scope and potential of base editing in directed evolution and crop improvement. Here, we isolated a rice endogenous hypoxanthine excision protein, N-methylpurine DNA glycosylase (OsMPG), and engineered two plant A-to-K (K = G or T) base editors, rAKBE01 and rAKBE02, for simultaneous adenine transition and transversion base editing in rice by fusing OsMPG or its mutant mOsMPG to a plant adenine transition base editor, ABE8e. We further coupled either OsMPG or mOsMPG with a transactivation factor VP64 to generate rAKBE03 and rAKBE04, respectively. Testing these four rAKBEs, at five endogenous loci in rice protoplasts, indicated that rAKBE03 and rAKBE04 enabled higher levels of A-to-G base transitions when compared to ABE8e and ABE8e-VP64. Furthermore, whereas rAKBE01 only enabled A-to-C/T editing at one endogenous locus, in comparison with rAKBE02 and rAKBE03, rAKBE04 could significantly improve the A-to-C/T base transversion efficiencies by up to 6.57- and 1.75-fold in the rice protoplasts, respectively. Moreover, although no stable lines with A-to-C transversion were induced by rAKBE01 and rAKBE04, rAKBE04 could enable simultaneous A-to-G and A-to-T transition and transversion base editing, at all the five target loci, with the efficiencies of A-to-G transition and A-to-T transversion editing ranging from 70.97 to 92.31% and 1.67 to 4.84% in rice stable lines, respectively. Together, these rAKBEs enable different portfolios of editing products and, thus, now expands the potential of base editing in diverse application scenario for crop improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.