Abstract

In the context of Shared Autonomous Vehicles, the need to monitor the environment inside the car will be crucial. This article focuses on the application of deep learning algorithms to present a fusion monitoring solution which was three different algorithms: a violent action detection system, which recognizes violent behaviors between passengers, a violent object detection system, and a lost items detection system. Public datasets were used for object detection algorithms (COCO and TAO) to train state-of-the-art algorithms such as YOLOv5. For violent action detection, the MoLa InCar dataset was used to train on state-of-the-art algorithms such as I3D, R(2+1)D, SlowFast, TSN, and TSM. Finally, an embedded automotive solution was used to demonstrate that both methods are running in real-time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.