Abstract

Wind turbine blades are typically manufactured from a small number of components which are bonded together with an adhesive. Over the life span of a wind turbine, the static and fatigue loads in varying environmental conditions can lead to cracking and/or debonding of the adhesive joints, ultimately leading to blade structural collapse. The objective of this work is to investigate fusion joining of wind turbine blades manufactured using thermoplastic resin. Thermoplastic resins for wind turbine blades can reduce cycle times and energy consumption during manufacturing and facilitate end-of-life recycling and on-site manufacturing. Additionally, fusion joining of these materials can replace adhesives, resulting in stronger and more robust blades. This work showed that, compared to typical adhesives used in wind turbine blades, fusion welding resulted in an increase in both the static and fatigue lap-shear strength as compared to bonded thermoplastic composite coupons. This initial coupon-scale research suggests that there is potential for developing fusion welding techniques for full-scale wind turbine blades.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.