Abstract
AbstractRigid and conductive poly(vinyl chloride) (PVC)/carbon black (CB) composites were prepared in a Haake torque rheometer. The results illustrate that the fusion torque of the PVC/CB composite is increased as the amount of CB is increased. Both the fusion percolation threshold and the fusion time of PVC/CB composites are decreased when the amount of CB is increased. Two major weight loss stages are observed in the TGA curve of PVC/CB composite. The first thermal degradation onset temperature (Tonset1) of PVC/CB composite is decreased as the amount of CB is increased. Both the first and second weight loss stages (ΔY1 and ΔY2) of PVC/CB composites are decreased as the amount of CB is increased. The surface resistivity of PVC/CB composite remains almost constant up to 6 parts per hundred unit weight of resin (phr) CB. When the amount of CB in PVC/CB composite is increased from 6 to 15 phr, the surface resistivity of PVC/CB composite is dramatically decreased from 1010 Ω/sq to 104 Ω/sq. Because of the addition of CB, the rigidity of PVC/CB composite is increased and thus the mechanical properties, such as yield strength, tensile strength, and the Young's modulus, are improved. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.