Abstract

In the electrophysiological laboratory, orthodromic atrioventricular reciprocating tachycardia (ORT) can be distinguished from atrial tachycardia and atrioventricular node reentry tachycardia by identifying orthodromic and antidromic wavefront fusion during ventricular overdrive pacing (VOP). Previous work has shown that basal VOP near the accessory pathway (AP) increases the likelihood of observing fusion; however, in a third of cases, fusion is not appreciable regardless of VOP location. To explore the hypothesis that pacing near His-Purkinje system (PS) end points reduces fusion quality, which may explain patients with nonresponsive ORT. In a novel computer model of ORT, simulations were performed with a variety of AP locations and pacing sites; results were analyzed to assess factors influencing fusion quality in pseudo-electrocardiogram signals. Entrainment by basal VOP near the AP was more likely to produce fusion visible on simulated electrocardiograms compared to entrainment by apical VOP, but this advantage was dramatically diminished when the pacing site was also near PS end points. Prediction of fusion quality based on AP proximity alone was dramatically improved when corrected to penalize for PS proximity. These results suggest that basal VOP near the AP and far from the PS is optimal; this could be tested in patients. A denser basal ramification of PS fibers is known to exist in a minority of human hearts; our findings indicate that this unusual PS configuration is a plausible explanation for ORT cases where fusion is never observed in spite of entrainment by basal VOP near the AP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.