Abstract

RNA interference (RNAi) is a promising tool for pest control and relies on sequence-specific gene silencing. Salivary proteins are cooperatively secreted into plants to guarantee the feeding of aphids; thus they have potential to develop as selective targets for RNAi-based pest control strategy. For this purpose, we firstly analyzed 18 salivary proteomes of various aphid species, and these salivary proteins can be mainly categorized into seven functional groups. Secondly, we created a work-flow for fusion dsRNA design that can target multiple genes but were selectively safe to beneficial insects. Based on this approach, seven fusion dsRNAs were designed to feed the green peach aphid, which induced a significant reduction in aphid fitness. Among them, ingestion of dsperoxidase induced the highest mortality in aphids, which was also significantly higher than that of traditional dsRNAs in targeting three peroxidases separately. In addition, dsperoxidase-fed green peach aphids triggered the highest H2O2 content of host plants as well as the attraction to natural enemies (ladybeetle and parasitic wasp) but repellent to other control aphids. Our results indicate that the fusion dsRNA design approach can improve aphid control capacity, and the fusion dsRNA targeting salivary protein-encoding genes can enhance the direct and indirect defenses of host plants, thus providing a new strategy for RNAi-based aphid control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.