Abstract

The energy dependence of the fusion cross section has been measured over the range E c.m. = 3.05–6.88 MeV by detecting the γ-rays from residual nuclei in a 4π geometry. Analyzing the 1.37 MeV photopeak, originating from 24 Mg 1.37 MeV → g.s. transition , the cross sections for 24Mg+2n channel were also deduced. The measured fusion cross sections have been compared with those for 12C + 12C and 12C + 13C systems and found to be significantly different. For 13C+ 13C the fusion cross sections agree with the standard optical-model prediction down to the lowest measured energies, while for 12C + 12C and 12C + 13C they are, at the lowest energies, too low. It is suggested that the unpaired valence nucleons facilitate fusion at energies well below the Coulomb barrier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call