Abstract

While silicon nitride surfaces are widely used in many micro electrical mechanical system devices, e.g. for chemical passivation, electrical isolation or environmental protection, studies on fusion bonding of two silicon nitride surfaces (Si3N4–Si3N4 bonding) are very few and highly application specific. Often fusion bonding of silicon nitride surfaces to silicon or silicon dioxide to silicon surfaces is preferred, though Si3N4–Si3N4 bonding is indeed possible and practical for many devices as will be shown in this paper. We present an overview of existing knowledge on Si3N4–Si3N4 bonding and new results on bonding of thin and thick Si3N4 layers. The new results include high temperature bonding without any pretreatment, along with improved bonding ability achieved by thermal oxidation and chemical pretreatment. The bonded wafers include both unprocessed and processed wafers with a total silicon nitride thickness of up to 440 nm. Measurements of bonding strength, void characterization, oxidation rate and surface roughness are also presented. Bonding strengths for stoichiometric low pressure chemical vapor deposition Si3N4–Si3N4 direct fusion bonding in excess of 2 J cm−2 are found. The stoichiometry is verified indirectly through refractive index and intrinsic stress measurements. The importance of surface oxide in Si3N4–Si3N4 fusion bonding is investigated by x-ray photoelectron spectroscopy measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.