Abstract

We invert experimental data for heavy‐ion fusion cross sections at energies well below the Coulomb barrier in order to directly determine the internucleus potential between the colliding nuclei. In contrast to the previous applications of the inversion formula, we explicitly take into account the effect of channel couplings on fusion reactions, by assuming that fusion cross sections at deep subbarrier energies are governed by the lowest barrier in the barrier distribution. The surface region of the internuclear potential is determined from quasi‐elastic scattering at deep subbarrier energies, while the inner part is determined with the WKB formula. We apply this procedure to the 16O+144Sm and 16O+208Pb reactions, and find that the inverted internucleus potential are much thicker than phenomenological potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.