Abstract

The present study was conducted to investigate whether typical isoprenyl compounds (TICs) can control liposomal fusion reactions through changes in the physical properties of membranes. The fusion capabilities of TIC-incorporated liposomes were characterized by measuring the 13C spin-lattice relaxation times (13CT1) and the gel permeation chromatogram (GPC) patterns. The 13CT1 relaxivities of some of these TIC-liposomes were remarkably enhanced at 27 degrees C. The highest 13CT1 value obtained was for the beta-carotene-liposome, which ruptured, and was attributed to the highest membrane fusion reactivity. The other TIC-liposomes incorporated with alpha-tocopherol, canthaxanthin, or coenzyme Q10 also induced significant fusion and did not rupture in comparison with the beta-carotene-liposome. These results show that the incorporations of TICs into lipid bilayers are useful to control liposomal nanocarriers for suitable membrane packing and advantageous phase separation, which could affect membrane-related processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.