Abstract
Dissipative particle dynamics (DPD) simulations are employed to study the fusion and fission dynamics of polymeric vesicles formed from amphiphilic triblock copolymers. The amphiphilic molecule is built from two hydrophilic blocks and a hydrophobic middle block. Two different pathways for both fusion and fission processes of two-component vesicles with polymer-based symmetric membranes have been found in the simulations. For each of the pathways, the conditions required to obtain complete fusion and fission have been investigated. Moreover, the fission process of single-component vesicles with polymer-based asymmetric membranes has also been studied in the simulations. Interestingly, the daughter vesicles have the same composition as the parent vesicle and only one fission pathway has been observed. Furthermore, the fusion and fission pathways have been compared and distinct vesicle recycling pathways have been suggested according to the results from the simulations. These findings may be helpful in explaining the fusion and fission dynamics of vesicles and understanding the general principle of membranes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.