Abstract

The aim of this study is the analysis of voice and speech recordings for the task of Parkinson’s disease detection. Voice modality corresponds to sustained phonation /a/ and speech modality to a short sentence in Lithuanian language. Diverse information from recordings is extracted by 22 well-known audio feature sets. Random forest is used as a learner, both for individual feature sets and for decision-level fusion. Essentia descriptors were found as the best individual feature set, achieving equal error rate of 16.3 % for voice and 13.3 % for speech. Fusion of feature sets and modalities improved detection and achieved equal error rate of 10.8 %. Variable importance in fusion revealed speech modality as more important than voice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.