Abstract
This study explores the integration of Support Vector Regression (SVR) with Particle Swarm Optimization (PSO) to forecast clothing product sales at Nara Gallery Collection Boutique, addressing the challenge of achieving high forecast accuracy in e-commerce. Through literature review, direct observation, and interviews with a textile SME owner, SVR parameters are optimized using PSO. Results indicate a Mean Absolute Percentage Error (MAPE) value of 8.98% with optimized parameters (C = 34.3642, ε = 0.0110, σ = 0.3677, cLR = 0.1062, λ = 0.0117), enhancing decision-making in inventory management and strategic planning for e-commerce businesses. This research highlights the potential of integrating SVR with PSO for accurate sales forecasting and suggests avenues for further exploration in alternative forecasting methods and optimization techniques. Highlight: Enhanced Forecasting Accuracy: SVR and PSO integration improves e-commerce sales predictions. Parameter Optimization: PSO optimizes SVR parameters, reducing Mean Absolute Percentage Error. Strategic Inventory Management: Accurate forecasts aid in effective e-commerce inventory control. Keywoard: Support Vector Regression, Particle Swarm Optimization, Sales Forecasting, E-commerce, Inventory Management
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.