Abstract
Multi-view subspace clustering has drawn significant attention in the pattern recognition and machine learning research community. However, most of the existing multi-view subspace clustering methods are still limited in two aspects. (1) The subspace representation yielded by the self-expression reconstruction model ignores the local structure information of the data. (2) The construction of subspace representation and clustering are used as two individual procedures, which ignores their interactions. To address these problems, we propose a novel multi-view subspace clustering method fusing local and global information for one-step multi-view clustering. Our contribution lies in three aspects. First, we merge the graph learning into the self-expression model to explore the local structure information for constructing the specific subspace representations of different views. Second, we consider the multi-view information fusion by integrating these specific subspace representations into one common subspace representation. Third, we combine the subspace representation learning, multi-view information fusion, and clustering into a joint optimization model to realize the one-step clustering. We also develop an effective optimization algorithm to solve the proposed method. Comprehensive experimental results on nine popular multi-view data sets confirm the effectiveness and superiority of the proposed method by comparing it with many state-of-the-art multi-view clustering methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.