Abstract
Drug repositioning is a promising drug development technique to identify new indications for existing drugs. However, existing computational models only make use of lower-order biological information at the level of individual drugs, diseases and their associations, but few of them can take into account higher-order connectivity patterns presented in biological heterogeneous information networks (HINs). In this work, we propose a novel graph representation learning model, namely FuHLDR, for drug repositioning by fusing higher and lower-order biological information. Specifically, given a HIN, FuHLDR first learns the representations of drugs and diseases at a lower-order level by considering their biological attributes and drug-disease associations (DDAs) through a graph convolutional network model. Then, a meta-path-based strategy is designed to obtain their higher-order representations involving the associations among drugs, proteins and diseases. Their integrated representations are thus determined by fusing higher and lower-order representations, and finally a Random Vector Functional Link Network is employed by FuHLDR to identify novel DDAs. Experimental results on two benchmark datasets demonstrate that FuHLDR performs better than several state-of-the-art drug repositioning models. Furthermore, our case studies on Alzheimer's disease and Breast neoplasms indicate that the rich higher-order biological information gains new insight into drug repositioning with improved accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.