Abstract
It is usually observed that among genes there exist strong statistical interactions associated with diseases of public health importance. Gene interactions can potentially contribute to the improvement of disease classification accuracy. Especially when gene expression differs across different classes are not great enough, it is more important to take use of gene interactions for disease classification analyses. However, most gene selection algorithms in classification analyses merely focus on genes whose expression levels show differences across classes, and ignore the discriminatory information from gene interactions. In this study, we develop a two-stage algorithm that can take gene interaction into account during a gene selection procedure. Its biggest advantage is that it can take advantage of discriminatory information from gene interactions as well as gene expression differences, by using "Bayes error" as a gene selection criterion. Using simulated and real microarray data sets, we demonstrate the ability of gene interactions for classification accuracy improvement, and present that the proposed algorithm can yield small informative sets of genes while leading to highly accurate classification results. Thus our study may give a novel sight for future gene selection algorithms of human diseases discrimination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.