Abstract

The effects of electrical stimulation within the midbrain on fusimotor output to the jaw elevator muscles were studied in anaesthetized cats. Muscle spindle afferents recorded in the mesencephalic trigeminal nucleus were categorised as primary or secondary by their responses to succinylcholine during sinusoidal or ramp-and-hold stretches. Changes in their stretch responses during midbrain stimulation were then assessed by changes in bias and in dynamic sensitivity. Problems were encountered in interpreting changes in sine wave stretch responses of primary afferents, in some of which a very small change in firing pattern produced large changes in estimates of the response amplitude. Sine wave testing also sometimes over-estimated static effects and under-estimated dynamic effects relative to ramp responses. On other occasions a small amount of static fusimotor activity caused a marked increase in sine response amplitude, which could be wrongly interpreted as a dynamic effect. Consequently, ramp responses only were used for diagnosing fusimotor changes. The most effective region for producing pure dynamic fusimotor excitation was directly rostral to the red nucleus, extending dorsally and ventrally approximately in the course of the retroflex bundle. Stimulation of regions caudal and dorso-caudal to the red nucleus, previously designated as the mesencephalic area for dynamic fusimotor control of leg muscles, gave static or mixed static and dynamic effects on jaw spindles. The use of midbrain stimulation to identify fusimotor neurones of jaw muscles as static or dynamic would be most reliable with stimulation just rostral to the red nucleus and would require spindle afferent behaviour to be monitored at the same time with ramp stretches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.