Abstract

We report a fusedly deposited frequency-selective composite (FD-FSCs), fabricated with a dual-nozzle 3D printer using a conductive carbon black (CB) polylactic acid (PLA) composite filament and a pure PLA polymer filament. The square frequency-selective pattern was constructed by the conductive CB/PLA nanocomposite, and the apertures of the pattern were filled with the pure dielectric PLA material, which allows the FD-FSC to maintain one single plane, even under bending, and also affects the resonating frequency due to the characteristic impedance of PLA (εr' ≈ 2.0). The number of the deposition layer and the printing direction were observed to affect electrical conductivity, complex permittivity, and the frequency selectivity of the FD-FSCs. In addition, the FD-FSCs designed for an X-band showed partial transmission around the resonant frequency and was observed to, quite uniformly, transmit microwaves in the decibel level of -2.17~-2.83 dB in the whole X-band, unlike a metallic frequency selective surface with full transmission at the resonance frequency. FD-FSCs embedded radar absorbing structure (RAS) demonstrates an excellent microwave absorption and a wide effective bandwidth. At a thickness of 4.3 mm, the 10 dB bandwidth covered the entire X-band (8.2~12.4 GHz) range of 4.2 GHz. Therefore, the proposed FD-FSCs fabricated by dual-nozzle 3D printing can be an impedance modifier to expand the design space and the application of radar absorbing materials and structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call