Abstract

Large graphene-like molecules with four zigzag edges are ideal gain medium materials for organic near-infrared (NIR) lasers. However, synthesizing them becomes increasingly challenging as the molecular size increases. In this study, we introduce a new intramolecular radical-radical coupling approach and successfully synthesize two fused triangulene dimers (1 a/1 b) efficiently. X-ray crystallographic analysis of 1 a indicates that there is no intermolecular π-π stacking in the solid state. When the more soluble derivative 1 b is dispersed in polystyrene thin films, amplified spontaneous emission in the NIR region is observed. Using 1 b as the active gain material, we fabricate solution-processed distributed feedback lasers that exhibit a narrow emission linewidth at around 790 nm. The laser devices also exhibit low thresholds with high photostability. Our study provides a new synthetic strategy for extended nanographenes, which have diverse applications in electronics and photonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.